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Communication performance has not improved at 
the same rate as computational performance on 
GPU based machines.
The production LLNL rad-hydro code Ares was 
ported to GPUs but has lower communication 
performance than expected.
Relevant characteristics:
• 2/3D semi-structured meshes
• parallelized by mesh splitting
• halo exchange communication

Physics Application

Communication Options

MPI Datatype Packing is Slow Problem Details

Code:
• Comb 0.2.0
• https://github.com/LLNL/Comb
Problem:
• 3 variables
• 50^3, 100^3, 200^3 zones per process
• 1-zone halo
• 26 neighbors per process
• 16 nodes, 64 processes, 64 GPUs
Machine:
• rzansel.llnl.gov
• 2 x IBM Power9 + 4 x Nvidia V100
Compilers:
• xl-2019.12.23 (16.1.1.6)
• cuda-10.1.243
MPI:
• spectrum-mpi-2019.06.24

Future Work

More fully examine:
• performance of MPI with one rank per core. 

CPU results here use OpenMP to utilize all 
CPU cores.

• parallelizing groups of messages using Cuda
streams to parallelize packing and potentially 
increase packing and communication overlap.

• automatic Cuda kernel fusion to reduce 
amount of communication code rewrite while 
gaining the benefits of kernel fusion.

• stream triggered communication (GPU direct 
async) to eliminate device synchronization 
overhead, and potentially increase packing 
and communication overlap

• Cuda graphs as a means of combining 
automatic Cuda kernel fusion and stream 
triggered communication.
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Look at communication performance on Sierra by 
combining various resources and techniques.
Memory spaces:
• Host based memory

• host memory (malloc)
• host pinned memory

• Device based memory
• CUDA device memory

• CUDA managed memory
Execution methods :
• Serial
• OpenMP host threading
• CUDA kernels
• CUDA graphs
• Manual CUDA kernel fusion
• Automatic CUDA kernel fusion
• CUDA Aware MPI datatypes
Communication staging methods:
• pack and send one message at a time
• pack messages and send messages in groups
• Pack all and send all messages
Communication libraries and methods:
• MPI
• CUDA Aware MPI (GPU direct)
• Libgpump (GPU direct async)
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Jason Burmark

Halo Exchange Performance on the Sierra Supercomputer

Large Fraction of GPU Time in Communication
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Kernel Launch Overhead Dominates Packing

Cuda Aware MPI with GPU Direct Performance is Mixed Stage Communication to Avoid Kernel Launch and Synchronization Overheads

GPU tests spend a higher proportion of time in communication relative to 
the OpenMP CPU tests for large problem sizes even with the fastest known 
communication options due to higher on-node performance.

Kernel launch overhead dominates packing and unpacking performance.
Manually fuse Cuda kernels to reduce the number of kernel launches and 
reduce the total overhead.

Spectrum MPI datatype packing and 
unpacking is not yet performant when used 
with device memory.

Cuda Aware MPI with gpu direct sends data directly 
from device memory to the network, but the 
performance is mixed.

• Performance of packing to device memory is 
higher than to host pinned memory

• Device Bandwidth to network is lower (hardware 
issues)

Stage messages in groups to fuse packing kernels 
and device synchronization for multiple messages. 
Balance reduced overhead with reduced overlap 
between packing and communication.

• One-by-One: Pack message, send message (x26)
• Two-Groups: Pack some messages, send some 

messages (x2)
• One-Group: Pack messages, send messages (x1)

The Comb halo exchange communication 
performance benchmarking tool was written to find 
ways to improve communication performance.
• Explore memory spaces, execution methods, and 

communication methods
• Comb steps

1. Placeholder computation
2. Halo-exchange communication

1. Irecv
2. Pack and Isend
3. Wait Recv and Unpack
4. Wait Send

3. Placeholder computation

Communication Benchmark
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